检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王保国[1] 刘淑艳[1] 李翔[1] 林欢[1] 李学东[1]
机构地区:[1]北京理工大学宇航科学技术学院,北京100081
出 处:《航空动力学报》2008年第2期374-382,共9页Journal of Aerospace Power
基 金:国家自然科学基金(50376004);高等学校博士学科点专项基金(20030007028)
摘 要:针对多目标、多设计变量的优化问题,提出了两种优化的新算法:一种是将多目标问题转化为单目标时,对目标权重的确定提出了新的途径;另一种是直接对多目标问题进行优化,并对Pareto遗传优化技术作了改进,以得到均匀分布的Pareto最优解集.两种新算法都是建立在Nash的系统分解与Pareto遗传算法的基础上,因此称这类算法为Nash-Pareto策略.借助于这类算法,文中以跨声速压气机双圆弧类叶型的气动优化为例,给出了气动优化的全过程.数值优化的实验表明所给出的改进算法是可行的、有效的.Two new algorithms are proposed in the present paper to solve the optimization problems of multi-objectives and multi-design variables. One of these algorithms translates multi-objective into single objective, and develops a new way to determine the objective weights; the other algorithm optimizes multi-objective directly and improves Pareto genetic optimization algorithm in order to obtain optimal solution set of uniform distribution on a Pa- reto frontier. These two algorithms are based on Nash system decomposition and Pareto genetic algorithm. Therefore, the algorithms of such type are named Nash-Pareto strategy. By using these algorithms, the aerodynamic design optimization of transonic compressor double circular arc profile is computed to show the whole process of optimization. The simulation of numerical optimization experiment illustrates that the improved algorithm is feasible and effective.
关 键 词:航空、 航天推进系统 Nash的系统分解法 Pareto遗传算法 Nash-Pareto策略 权重确定 气动数值优化 压气机造型
分 类 号:V231.1[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145