检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河海大学计算机及信息工学院,江苏常州213022
出 处:《河海大学常州分校学报》2007年第4期9-12,共4页Journal of Hohai University Changzhou
摘 要:对启发式优化算法中的差分进化算法进行改进,在进化过程中并行交叉采用DE/rand/1/exp和DE/best/1/exp差分策略,应用聚集度因子进行种群重构,缩小了种群重构后的搜索范围,有效避免了种群重构的随机性.仿真结果表明,改进算法与使用单一差分策略的差分进化算法及PSO算法相比,寻优能力得到了显著提高.To improve the differential algorithm, a new kind of heuristic optimization method and a modified differential evolution (MDE) scheme are presented, where DE / rand / 1 / exp and DE / best / 1 / exp run currently in evolution process. With the usage of current aggregation degree, the search range of re- initialization of the MDE is reduced and the randomicity of re- initialization is avoided efficiently. The experimental results show that the search ability of MDE is improved remarkably compared to DE with single differential strategy and PSO.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143