检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yan Xia REN
机构地区:[1]LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
出 处:《Acta Mathematica Sinica,English Series》2008年第2期275-284,共10页数学学报(英文版)
基 金:NNSF of China (Grant No.10471003);Foundation for Authors Awarded Excellent Ph.D.Dissertation
摘 要:The global supports of super-Poisson processes and super-random walks with a branching mechanism ψ(z)=z^2 and constant branching rate are known to be noncompact. It turns out that, for any spatially dependent branching rate, this property remains true. However, the asymptotic extinction property for these two kinds of superprocesses depends on the decay rate of the branching-rate function at infinity.The global supports of super-Poisson processes and super-random walks with a branching mechanism ψ(z)=z^2 and constant branching rate are known to be noncompact. It turns out that, for any spatially dependent branching rate, this property remains true. However, the asymptotic extinction property for these two kinds of superprocesses depends on the decay rate of the branching-rate function at infinity.
关 键 词:super-Poisson process super-random walk global support asymptotic extinction
分 类 号:O211.6[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30