Kac-Moody-Virasoro symmetry algebra of a (2+1)-dimensional bilinear system  被引量:2

Kac-Moody-Virasoro symmetry algebra of a (2+1)-dimensional bilinear system

在线阅读下载全文

作  者:李金花 楼森岳 

机构地区:[1]Department of Physics,Ningbo University [2]Department of Physics,Shanghai Jiaotong University

出  处:《Chinese Physics B》2008年第3期747-753,共7页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos10475055 and 90503006);the Science Research Fund of Zhejiang Provincial Education Department,China(Grant No20040969)

摘  要:Based on some known facts of integrable models, this paper proposes a new (2+1)-dimensional bilinear model equation. By virtue of the formal series symmetry approach, the new model is proved to be integrable because of the existence of the higher order symmetries. The Lie point symmetries of the model constitute an infinite dimensional Kac- Moody Virasoro symmetry algebra. Making use of the infinite Lie point symmetries, the possible symmetry reductions of the model are also studiedBased on some known facts of integrable models, this paper proposes a new (2+1)-dimensional bilinear model equation. By virtue of the formal series symmetry approach, the new model is proved to be integrable because of the existence of the higher order symmetries. The Lie point symmetries of the model constitute an infinite dimensional Kac- Moody Virasoro symmetry algebra. Making use of the infinite Lie point symmetries, the possible symmetry reductions of the model are also studied

关 键 词:general symmetries Kac-Moody Virasoro symmetry algebra symmetry reduction 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象