检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科技大学航天与材料工程学院,湖南长沙410073
出 处:《推进技术》2008年第1期1-7,共7页Journal of Propulsion Technology
摘 要:以探索知识重用在固体火箭发动机设计中的应用为目的,引入知识工程及模糊数学的思想,将一般模糊极小极大神经网络用于完成固体发动机设计过程中结构形式选择,实现了固体发动机结构形式选择的自动化及量化描述。首先给出了基于知识重用的固体发动机结构形式选择模型描述;然后建立了固体发动机结构选项一般模糊极小极大神经网络;最后以具体型号总体设计为例,完成结构形式选择,得到了包含实际结果的多个可行方案。该方法提高了设计过程自动化水平,且可提供多个不同的结构选择可行方案供设计人员参考。To discuss the application of knowledge reuse in solid rocket motor (SRM) design, general fuzzy min-max GFMM) neural network was used for structure selection of SRM design and knowledge-based engineering and fuzzy sets theory were studied as well as automatism and quantification of SRM structure selection were realized. Firstly,the model based on knowledge reuse of SRM structure selection was presented. Secondly, GFMM neural network for SRM structure selection was created. Finally, structure selection was finished in a SRM system design by the GFMM neural network. Many feasible results of structure selection were gained, which included the actual result. This technology can improve the degree of automatism and quantification of SRM structure selection, all of different feasible results are provided for SRM designer.
关 键 词:知识工程 知识重用 一般模糊极小极大神经网络 固体推进剂火箭发动机 结构模式识别
分 类 号:V435.1[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30