一种面向多领域支持高可靠Web服务合成的服务发现模型  

Study on Service Discovery Model Multi-domain Oriented Supporting High Reliable Web Services Composition

在线阅读下载全文

作  者:申德荣[1] 寇月[1] 聂铁铮[1] 于戈[1] 

机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110004

出  处:《小型微型计算机系统》2008年第3期444-449,共6页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(60673139)资助;国家"八六三"计划CIMS主题(2003AA414210)资助

摘  要:为支持高可靠的Web服务合成,如何发现合适的Web服务至关重要.然而,服务匹配的准确性直接影响合成的Web服务的质量,服务匹配的复杂度极大地影响服务合成执行的时间代价.本文阐述了面向多领域支持高可靠的Web服务合成模型的思想,提出了一种用于全方位描述服务的描述模式X+WSDL.基于此,提出相应的基于本体的服务发现模型和匹配算法.服务发现模型包括概要匹配、功能匹配、非功能匹配和QoS匹配四部分,分服务发布匹配、服务发现匹配和服务QoS匹配三个阶段完成.通过将服务匹配部分工作分布于服务发布阶段完成,减少了合成服务执行的时间代价;按需基于约束的服务匹配增强了服务匹配的灵活性;QoS评价模型有效地保证了Web服务合成的质量.通过实际应用,验证了本文提出的服务匹配模型的有效性.To support highly reliable Web services composition, how to discover suitable Web services becomes more and more important. While, accuracy of services matching impacts on the quality of Web services composition, and complexity of that influences the responding time of Web services composition. Based on the idea of supporting multi-domain oriented and high reliable Web services composition model, an all-dimensional service description Iogic-X+WSDL is proposed, with which an effective Service Discovery Model and corresponding matching algorithm are proposed. In the Service Discovery Model, profile matching, functional matching, nonfunctional matching and QoS matching are included and realized at three stages, namely publish matching stage, discovery matching stage and QoS matching stage. The responding time in discovering Web services is substantially decreased by sacrificing the publishing cost, while the flexibility of discovering Web services on demands are obtained by means of nonfunctional matching, and the reliability of Web services composition is enhanced by means of QoS model. The availability of the Service Discovery Model and its advantages are testified in practical applications.

关 键 词:WEB服务合成 服务匹配 QOS WSDL 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象