检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南大学信息科学与工程学院,湖南长沙410083 [2]清华大学信息技术研究院,北京100084
出 处:《小型微型计算机系统》2008年第3期469-472,共4页Journal of Chinese Computer Systems
基 金:国家自然科学基金资助项目(60473078)资助
摘 要:协作过滤算法作为最成功的个性化推荐技术已经被应用到很多领域中.算法产生的预测值通常是一个小数,还需要判定为对应到某个评分级别的整数.传统的算法按照"四舍五入"原则产生判定值,考虑过于简单,忽略了用户的评分趋势.针对这个问题,提出了基于用户评分趋势的预测值判定算法.该算法综合考虑预测值与评分级别之间的偏离,以及用户的评分趋势,再对预测值进行判定.实验表明,改进后的协作过滤算法在推荐效果方面得到了更好的改善.Collaborative filtering is the most successful personalized recommendation technology, and is extensively used in many fields. The predict value produced by collaborative filtering algorithm is always a decimal fraction, and needs to be judged as an integer correspond to some grade. However, existing collaborative filtering algorithms round predict value and get the judgment value simply without consideration of user's grade trend. To solve this problem, the paper describes a judgment algorithm for predict value based on user's grade trend. The algorithm considers both the distance between predict value and grade value, and user's grade trend, and then makes the decision. Experimental results show that our proposed algorithm outperforms traditional collaborative filtering algorithm.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.60.124