检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京理工大学计算机科学技术学院,北京100081
出 处:《小型微型计算机系统》2008年第3期498-502,共5页Journal of Chinese Computer Systems
基 金:北京理工大学基础研究基金项目(0301F18)资助
摘 要:传统协同推荐将用户相似性作为选择推荐者的基准,过多地依赖用户相似性.借鉴Hovland说服模型,提出了基于经验的协同推荐算法.指出推荐效果受多个因素影响,用户经验是选择推荐者时需要考虑的重要因素.给出了从行为日志中测量用户经验的方法,并给出了将用户经验与相似性相结合,整合到标准的协同推荐框架中的两种方法.在真实日志数据上进行了测试.实验表明,与传统方法相比,该方法能够推荐用户感兴趣却意想不到的网页,提高推荐的质量.Suggesting the most recommendable and trustworthy information that the users can't discover on their own is the just way to improve the quality of recommendation. Traditional collaborative recommendation systems relied heavily on similarity of users. This paper argues that users' similarity alone is not enough and additional factors should also be considered in guiding recommendation. We believe that users' expertise must be an important consideration because people usually trust the suggestions coming from persons with high expertise. We propose a simple method to compute user's expertise from logs and present two ways to incorporate user's expertise into the standard collaborative recommendation frameworks with similarity. We evaluate the approach on a real-world data-set. Experimental results indicate that this method can recommend interesting but unexpected pages to target users and improve the serendipity ratio greatly compared to the existing methods.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40