Existence of Formal Conservation Laws of a Variable-Coefficient Korteweg-de Vries Equation from Fluid Dynamics and Plasma Physics via Symbolic Computation  被引量:2

Existence of Formal Conservation Laws of a Variable-Coefficient Korteweg-de Vries Equation from Fluid Dynamics and Plasma Physics via Symbolic Computation

在线阅读下载全文

作  者:张春义 李娟 孟祥花 许韬 高以天 

机构地区:[1]Key Laboratory of Fluid Mechanics (Ministry of Education) and National Laboratory for Computational Fluid Dynamics, Beijing University of Aeronautics and Astronautics, Beijing 100083 [2]Meteorology Center of Air Force Command Post, Changchun 130051 [3]School of Science, PO Box 122, Beijing University of Posts and Telecommunications, Beijing 100876 [4]State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100876

出  处:《Chinese Physics Letters》2008年第3期878-880,共3页中国物理快报(英文版)

基  金:Supported by the Key Project of Chinese Ministry of Education under Grant No 106033, the National Natural Science Foundation of China under Grant Nos 60372095 and 60772023, Open Fund of the State Key Laboratory of Software Development Environment under Grant No SKLSDE-07-001, Beijing University of Aeronautics and Astronautics, the National Basic Research Programme of China under Grant No 2005CB321901, the Green Path Programme of Air Force of the Chinese People's Liberation Army, the Cheung Kong Scholars Programme of the Ministry of Education of China and Li Ka Shing Foundation of Hong Kong.

摘  要:Employing the method which can be used to demonstrate the infinite conservation laws for the standard Kortewegde Vries (KdV) equation, we prove that the variable-coeFficient KdV equation under the Painlevé test condition also possesses the formal conservation laws.Employing the method which can be used to demonstrate the infinite conservation laws for the standard Kortewegde Vries (KdV) equation, we prove that the variable-coeFficient KdV equation under the Painlevé test condition also possesses the formal conservation laws.

关 键 词:NONLINEAR EVOLUTION-EQUATIONS SOLITARY WAVES MATHEMATICAL APPROACH POSITONIC SOLUTIONS KDV EQUATION DUSTY PLASMA MODEL TRANSFORMATION SOLITONS DEVRIES 

分 类 号:O53[理学—等离子体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象