检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《山东大学学报(理学版)》2008年第2期109-112,共4页Journal of Shandong University(Natural Science)
基 金:山东省教育厅科技基金资助项目(TJY0706);济南大学博士基金资助项目(B0625);济南大学科技基金资助项目(Y0615XKY0705)
摘 要:图G的一个k-(d,1)-全标号是一个映射f:V(G)∪E(G)→{0,1,2…,k},使得(1)相邻的顶点标不同的号;(2)相邻的边标不同的号;(3)顶点与所关联的边标号数相差至少为d(d≥2)。图G的(d,1)-全标号数定义为G有一个k-(d,1)-全标号的最小的k值。给出了一类二部图的(d,1)-全标号数。The ( d, 1)-total labelling number of a graph G is the width of the smallest range of integers that suffices to label the vertices and edges of G such that: ( 1 ) any two adjacent vertices of G receive distinct integers; (2) any two adjacent edges of G receive distinct integers; (3) each vertex and its incident edges receive integers which differ as at least d ( d ≥ 2) in absolute value. Some results of the ( d, 1)-total labelling number for some bipartite graphs wene given.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28