检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]玉溪师范学院数学系,云南玉溪653100 [2]红河学院数学系,云南蒙自661100
出 处:《四川师范大学学报(自然科学版)》2008年第2期141-144,共4页Journal of Sichuan Normal University(Natural Science)
基 金:国家自然科学基金(10571062);云南省教育厅自然科学基金(06Y147A)资助项目
摘 要:用微分方程定性理论结合数值模拟方法研究了一类非线性KdV方程的有界行波.在γ>0的条件下,得到了该系统的相图分支,根据相图给出了有界行波的存在条件,并求出了有界行波的解.用数学软件Maple对行波方程的数值模拟进一步验证了理论分析结果.The qualitative theory of ordinary differential equations and numerical simulation method are employed to investigate the bounded traveling waves of a nonlinear KdV equation. Under the condition γ 〉 0, the bifurcation phase portraits are drawn. From the bifurcation phase portraits, the parameter conditions for the bounded traveling waves to exist are found, the solutions coincide. The numerical simulations of the traveling wave equation obtained by using the mathematical software MAPLE and the qualitative results are identical.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.223