检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机科学》2008年第3期142-145,共4页Computer Science
基 金:国家自然科学基金资助项目(60675015)
摘 要:构造虚拟样本能够为机器学习中的训练集融入先验知识,从而改善标注瓶颈问题。提出了一种本体驱动的文本虚拟样本构造方法。在确保类别不变性的前提下,该方法依据领域相关本体所明晰表达的领域知识,基于本体树的点、边、子树,从同义、父子、语义同构的多个词义关系角度实现了文本虚拟样本的构造。初步实验表明,该方法与原分类及类似方法相比具有更好的分类精度和推广能力。Constructing virtual examples can incorporate prior knowledge into training set in machine learning, so as to alleviate the labeling bottleneck. An Ontology-driven scheme to construct text virtual sample is proposed. Under the precondition of label invariability, the proposal constructs virtual samples according to the domain knowledge explicitly formalized by domain-specific Ontology. Based on the different Ontology tree structures, namely nodes, edges, and sub-trees, various lexical-semantic relations, including synonymy, paternity, and semantic isomorphs, are applied into text virtual example constructing. The primary experimental results show the scheme outperforms original text catego- rizations and other similar ones in precision and generalization ability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.17