检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘淳安[1]
出 处:《西华大学学报(自然科学版)》2008年第2期72-75,共4页Journal of Xihua University:Natural Science Edition
基 金:陕西省自然科学基础研究计划项目(No.2006A12);陕西省教育厅科学研究计划项目(No.07JK180);宝鸡文理学院重点科研计划项目(No.ZK0619)
摘 要:提出了一种解约束优化问题的新PSO算法(LCPSO)。该方法引入了Levy变异策略,使算法LCPSO能有效克服标准PSO算法易陷入局部最优的缺陷。为更好求解约束边界附近的全局最优解,算法在选择下一代个体时保持群体中不可行解的一定比例,这样,不但能有效增加群体的多样性,而且避免了传统的过度惩罚,使群体向最优解更好、更快的逼近。数值试验表明该算法对约束优化问题求解是非常有效的。A new PSO algorithm (LCPSO) for solving the constrained optimization problems is presented in this paper. The new approach does not require the use of a penalty function, it uses a Levy mutation operator to overcome the defaults of plunging into the local optimal solution by simple PSO. In order to obtain the global optimal solutions, which often locate in the boundary of the constrained region, a new selection operator is introduced based on the constrained conditions of the optimization problem. The new LCPSO can keep the ratio of infeasible solutions in the swarm when selecting the next generation swarm by using the new selection operator. As a result, it can not only increase the diversity of swarm but also avoid the defects of over-penalization and make the swarm approach to the optimal solutions. The numerical experiments show that the proposed algorithm is effective in dealing with the constrained optimization problems.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] O221[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.36