检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]长沙大学机电工程系,湖南长沙410003 [2]中南大学信息科学与工程学院,湖南长沙410083
出 处:《湖南农业大学学报(自然科学版)》2008年第1期105-108,共4页Journal of Hunan Agricultural University(Natural Sciences)
基 金:国家自然科学基金(60371046)
摘 要:针对柔性车间作业调度问题,在深入分析差分进化算法的基础上,提出了一种多种群差分进化算法.该算法基于DE/rand/2/bin变异方式全局搜索能力强,鲁棒性好,和DE/best/2/bin变异方式局部搜索能力强,收敛速度快;包含若干个普通种群和一个精英种群,普通种群采用DE/rand/2/bin变异方式,精英种群采用DE/best/2/bin变异方式,普通种群和精英种群及普通种群之间在适当的时候进行优秀个体迁移,以实现全局搜索能力和收敛速度之间的平衡,并从现实生产实际出发,建立了双目标柔性车间作业调度数学模型.最后,将该算法应用于一个调度算例,仿真结果表明,该算法可行有效.In view of the problem in flexible job shop scheduling problem, a multi-population differential evolution algorithm was presented, based on the thorough analysis of differential evolution (DE) algorithm. Based on the high global searching ability and robustness of DE/rand/2/bin mutation scheme and the good performance of local searching ability and fast convergence speed of DE/best/2/bin mutation scheme, the algorithm includes several ordinary populations and a particular population. The ordinary populations take the DE/rand/2/bin mutation scheme, while the particular population takes the DE/best/2/bin mutation scheme. To balance the global searching ability and the convergence speed, some excellent individuals are migrated in proper time between ordinary populations and particular population and ordinary populations themselves. And a bi-objective mathematical model of flexible job shop scheduling is established for the sake of practical production. Finally, the algorithm is used in an example of scheduling, the simulation results show that the algorithm is feasible and efficient.
关 键 词:柔性车间作业调度 多种群 差分进化算法 双目标数学模型
分 类 号:TH165[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.223.160