检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《系统仿真学报》2008年第6期1471-1474,共4页Journal of System Simulation
基 金:国家自然科学基金(60377002)
摘 要:提出了一种改进的粒子群优化(PSO)算法来进行函数优化,以克服PSO算法容易陷入局部极值的不足,加快收敛速度,从而实现全局搜索。PSO算法是基于群体智能的随机优化算法,参数结构简单,但收敛速度慢,容易陷入局部极值。通过对PSO算法的深入分析,基于传统的速度——位置更新操作,把免疫克隆(IC)原理引入PSO算法中,将抗体视为粒子,根据亲和度的高低进行粒子克隆选择、克隆抑制和高频变异,提高了种群的多样性和全局搜索的能力。测试结果表明,该算法完成全局搜索所需的迭代次数明显少于PSO算法,大大缩短了搜索时间,在多维函数最优解的搜索中具有优良的性能。A modified particle swarm optimization (PSO) algorithm was adopted to optimize functions, which overcame the shortcoming of converging to local optimum for PSO algorithm, increased the converging rate and achieve the global searching. PSO algorithm is a random optimizing algorithm based on swarm intelligence that has a simple parameter structure; however, it has a slow converging rate and is easy to obtain a local optimum. Through a considerate analysis of PSO algorithm, immunity clone (IC) algorithm was introduced to the PSO algorithm based on traditional velocity-displacement operator. The antibodies could be regarded as the particles, and according to the degree of affinity, the clone selection, clone suppression, and high-frequency mutation were performed, which could enhance the diversity of particle swarms and the capability of global searching. From the test results, it is shown that this algorithm has perfect property in multi-dimension function searching and needs shorter searching time and fewer iteration times than PSO algorithm.
关 键 词:群体智能 粒子群优化(PSO)算法 免疫克隆(IC)算法 全局搜索
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222