检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任双桥[1] 傅耀文[1] 黎湘[1] 庄钊文[1]
机构地区:[1]国防科学技术大学电子科学与工程学院空间电子信息技术研究所,湖南长沙410073
出 处:《软件学报》2008年第4期842-850,共9页Journal of Software
基 金:国家自然科学基金No.60402032~~
摘 要:对于二类目标特征选择问题,首先讨论了特征空间的线性可分性问题,并给出了其判别条件;其次,通过借鉴支撑矢量机原理,分析了特征可分性判据的基本性质;最后,依据各特征对分类间隔的贡献大小定义了特征有效率,并以此进行特征选择和特征空间降维.实测数据与网络公开UCI(University of california,Irvine)数据库的实验结果表明,与经典的Relief特征选择算法相比,该算法在识别性能和推广能力上明显有所提高.Firstly, a distinguishable condition is proposed for separating the features by linear classification hyper surface. Secondly, the paper analyses the properties of the feature linear distinguishable criterion based on support vector machines (SVMs). Finally, the efficiency rate of features are defined by the contribution to classes margin of each feature, and a feature selection algorithm is put forward based on the feature efficiency rate. As experimental results show, validated with the actually measuring data and UCI (University of California, Irvine) data, performance of the new feature selection method, such as classification capability and generalized capability are improved obviously in contrast to the classical Relief method.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.226.15