检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《微电子学与计算机》2008年第4期80-85,共6页Microelectronics & Computer
摘 要:研究如何在一棵平衡树中删除一个结点后仍保持平衡.若删除结点后无法保持平衡,对原平衡树中的有效结点逐个取出进行重建平衡树,同时完成对平衡树存贮空间的压缩.在给出删除算法(Delete)的同时,给出了后根删除(Postd)、建树(Maketree)、构造(Construct)、合成(Compost)、嵌入(Implant)等算法.这些算法的完成为求集合的并、交、差及测集合的包含关系奠定了基础.最后给出删除算法的时间复杂度证明.The paper is the later ,series of paper three, how to delete a node in a BT and keep its balance is the topic. If the BT can't keep balance after a node is deleted, get all the active nodes one by one and rebuild the BT. At the same time, the compression for storage space for BT is completed. Apart from the delete algorithms, other algorithms such as Postd, Maketree, Construct, Compost, Implant are present, too. All these algorithms are foundations of set operation to find the union, intersect, difference set and inclusion relations. In the end, the time complexity of above algorithms is presented.
分 类 号:TP311.31[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229