按最大内接圆法评定圆度误差的仿增量算法  被引量:6

Implementation of Maximum Inscribed Circle Method for Evaluation of the Roundness Errors by Means of Quasi-incremental Algorithm

在线阅读下载全文

作  者:岳武陵[1] 吴勇[1] 

机构地区:[1]南通大学机械工程学院,江苏南通226007

出  处:《计量学报》2008年第1期26-28,共3页Acta Metrologica Sinica

摘  要:按最大内接圆法评定圆度误差的仿增量算法是将工件轮廓看作一个有序点集,并建立一个初始子集和它的内接圆。通过迭代的方法由此初始圆得到全点集的内接圆,然后用新的迭代的方法由此内接圆求得全点集的最大内接圆。两次迭代过程类似,均是通过对原子集增加一个点得到新子集,由新子集求一个更接近目标的新圆,并舍弃新子集中不在新圆圆周上的点,直到达到目标。证明了该算法是正确的且单调递增收敛的。用几个实际零件圆度误差的评定验证了该算法。A quasi-incremental algorithm is proposed to evaluate the roundness error by maximum inscribed circle (MIC) method. The measured profile is regarded as an ordered set of points. Firstly, pick some points to form an initial subset and construct its own inscribed circle (IC). Then an inscribed circle for whole set of points can be. achieved by using an iterative algorithm. Secondly, the final MIC from the previous results by using another iterative algorithm. Both iterative algorithms are similar: choosing a new point not covered by current circle into subset, a better inscribed circle will be. achieved; also points already out of the circle will be removed during the process. The algorithm is proved to be correct and convergent to accurate roundness error monotonously increasing. Some practical examples show that it is correct, accurate and efficient.

关 键 词:计量学 圆度误差 最大内接圆 误差评定 仿增量算法 

分 类 号:TB921[一般工业技术—计量学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象