Ruin Probabilities in the Risk Process with Random Income  被引量:2

Ruin Probabilities in the Risk Process with Random Income

在线阅读下载全文

作  者:Zhen-hua Bao Zhong-xing Ye 

机构地区:[1]School of Mathematics, Liaoning Normal University, Dalian 116029, China [2]Department of mathematics, Shanghai Jiaotong University, Shanghai 200240, China

出  处:《Acta Mathematicae Applicatae Sinica》2008年第2期195-202,共8页应用数学学报(英文版)

基  金:National Basic Research Program of China(973 Program No.2007CB814903);the National Natural Science Foundation of China(No.70671069)

摘  要:We extend the classical risk model to the case in which the premium income process, modelled as a Poisson process, is no longer a linear function. We derive an analog of the Beekman convolution formula for the ultimate ruin probability when the inter-claim times are exponentially distributed. A defective renewal equation satisfied by the ultimate ruin probability is then given. For the general inter-claim times with zero-truncated geometrically distributed claim sizes, the explicit expression for the ultimate ruin probability is derived.We extend the classical risk model to the case in which the premium income process, modelled as a Poisson process, is no longer a linear function. We derive an analog of the Beekman convolution formula for the ultimate ruin probability when the inter-claim times are exponentially distributed. A defective renewal equation satisfied by the ultimate ruin probability is then given. For the general inter-claim times with zero-truncated geometrically distributed claim sizes, the explicit expression for the ultimate ruin probability is derived.

关 键 词:Beekman convolution formula Defective renewal equation Ruin probability Zero-truncated geo-metric distribution 

分 类 号:F830.59[经济管理—金融学] O211[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象