检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhen-hua Bao Zhong-xing Ye
机构地区:[1]School of Mathematics, Liaoning Normal University, Dalian 116029, China [2]Department of mathematics, Shanghai Jiaotong University, Shanghai 200240, China
出 处:《Acta Mathematicae Applicatae Sinica》2008年第2期195-202,共8页应用数学学报(英文版)
基 金:National Basic Research Program of China(973 Program No.2007CB814903);the National Natural Science Foundation of China(No.70671069)
摘 要:We extend the classical risk model to the case in which the premium income process, modelled as a Poisson process, is no longer a linear function. We derive an analog of the Beekman convolution formula for the ultimate ruin probability when the inter-claim times are exponentially distributed. A defective renewal equation satisfied by the ultimate ruin probability is then given. For the general inter-claim times with zero-truncated geometrically distributed claim sizes, the explicit expression for the ultimate ruin probability is derived.We extend the classical risk model to the case in which the premium income process, modelled as a Poisson process, is no longer a linear function. We derive an analog of the Beekman convolution formula for the ultimate ruin probability when the inter-claim times are exponentially distributed. A defective renewal equation satisfied by the ultimate ruin probability is then given. For the general inter-claim times with zero-truncated geometrically distributed claim sizes, the explicit expression for the ultimate ruin probability is derived.
关 键 词:Beekman convolution formula Defective renewal equation Ruin probability Zero-truncated geo-metric distribution
分 类 号:F830.59[经济管理—金融学] O211[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117