检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马春翔[1] 李涛[1] 王伟方[1] 潘铭跃[1]
机构地区:[1]上海交通大学机械与动力工学院,上海200030
出 处:《计量学报》2007年第3期228-231,共4页Acta Metrologica Sinica
摘 要:在考虑零件样本不足的情况下,根据可能性理论,将零件尺寸视为模糊变量,给出了表征它的模糊约束和模糊可能性分布函数。基于模糊可能性测量理论,分析了当零件的尺寸公差带为清晰区间(普通集)和模糊允许区间(模糊集)时,测量零件合格与不合格的模糊可能性测量方法。提出了测量零件合格模糊可能性测量、零件可修复不合格模糊可能性测量和和零件不可修复不合格模糊可能性测量的计算公式,并给出了零件合格模糊可能性测量的变化规律。最后进行了实例计算。Under the condition of lack of parts samples, according to possibility theory, the dimensions of parts is taken as a fuzzy variable, and the fuzzy restriction and fuzzy possibility distribution function for expressing the dimension of parts is given. Based on the fuzzy possibility measurement theory, the fuzzy mathematical approach to measure qualified parts and non-qualified parts are analyzed when the tolerance of the dimensions of parts is considered as crisp allowable interval and fuzzy allowable interval. Then the formulas to calculate the fuzzy possibility measurement of qualified parts, non-qualification reparable parts and non-qualification non-reparable parts are proposed, and the changing regularities of the fuzzy possibility measurement of qualified parts are given out. Finally, the calculation of example is carried out.
关 键 词:计量学 零件尺寸 模糊约束 模糊分布 模糊可能性测量
分 类 号:TB92[一般工业技术—计量学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117