Global stability analysis of a ratio-dependent predator-prey system  

Global stability analysis of a ratio-dependent predator-prey system

在线阅读下载全文

作  者:鲁铁军 王美娟 刘妍 

机构地区:[1]College of Science,University of Shanghai for Science and Technology

出  处:《Applied Mathematics and Mechanics(English Edition)》2008年第4期495-500,共6页应用数学和力学(英文版)

摘  要:A ratio dependent predator-prey system with Holling type Ⅲ functional response is considered. A sufficient condition of the global asymptotic stability for the positive equilibrium and existence of the limit cycle are given by studying locally asymp- totic stability of the positive equilibrium. The condition under which positive equilibrium is not a hyperbolic equilibrium is investigated using Hopf bifurcation.A ratio dependent predator-prey system with Holling type Ⅲ functional response is considered. A sufficient condition of the global asymptotic stability for the positive equilibrium and existence of the limit cycle are given by studying locally asymp- totic stability of the positive equilibrium. The condition under which positive equilibrium is not a hyperbolic equilibrium is investigated using Hopf bifurcation.

关 键 词:RATIO-DEPENDENT global asymptotic stability functional response Hopf bifurcation 

分 类 号:O175.13[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象