检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学医学物理系,南京211100
出 处:《现代生物医学进展》2008年第4期709-712,共4页Progress in Modern Biomedicine
摘 要:目的:探索建立一种新的自动识别标志点的方法。方法:本方法主要分成三步:首先,根据标志点的灰度特征在3D图像上搜索标志点,并得到候选点;然后,计算出搜索到的候选点区域的亮度重心,并作为该点的位置坐标;最后,根据标志点大小、相互间位置关系以及标志点周围区域像素的灰度变化等特征,筛选出真正的标志点。结果:利用该算法对三维理想模型和真实CT重建模型上的标志点进行识别,实验的结果表明该算法能准确识别出这两种模型上的标志点,平均误差均小于2个象素。结论:该方法能快速准确地识别出3D医学图像中的标志点。它不需要人为干预,且不受标志点形状的影响。Objective: To explore a new automatic method for 3D detection. Methods: The method included three steps. First, the candidate markers in 3D data set were searched and obtained according to the intensity of fiducial marker. Secondary, the intensity-weighted centroid of each candidate fiducial region was calculated as the candidate markers' position. Finally, the real markers were screened out from the candidates by other confined conditions, such as the size of markers, the distance between the markers and the intensity of the region around the marker. Results: The approach was validated by both simulated datasets and CT phantom scan, the average fiducial localization error was less than 2 pixeks. Conclusion: The method provided high 3D localization accuracy and was independent of the shape of the marker.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.171.199