检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭天荣[1]
出 处:《常州工学院学报》2008年第1期68-73,共6页Journal of Changzhou Institute of Technology
摘 要:文章证明:导致贝尔不等式的是经典概率论,与定域性原理无关,也与隐变量理论无关;但应用经典概率论,也可以导出量子力学的自旋相关公式。这一事实表明:在某种情况下,经典概率论会得出与量子力学不同的结论,而在另一情况下,经典概率论也可能与量子力学殊途同归。更进一步的考察表明:经典概率论的各种概率运算规则,其中包括联合概率的运算规则,都适用于微观过程;而经典概率论的事件运算规则,即布尔代数,则不适用于微观过程。贝尔不等式的毛病在于对"非布尔"的微观事件空间应用了布尔代数的运算规则。This paper proves that Bell's inequality is originated from classical probability theory, and thereby is related neither to locality nor to hidden variables. But it is also possible to derive spin correlation formula in quantum mechanics according to the classical probabilistic theory. This fact indicates that on cer- tain conditions, classical probabilistic theory would be inconsistent with quantum mechanics, but under other conditions,classical probabilistic theory and quantum mechanics would reach the same goal by different means. Still further, this paper confirms that all of the probability operation rules in classical probability theory ,containing joint probability operation rules, are suitable for micro processes ,but the event operation rules in classical probability theory are unsuitable. The reason obtaining Bell's inequality lies in the steps applying Boolean algebra rules on the non - Boolean micro event space.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.212.19