检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北省气象与生态环境重点实验室,河北省气象科学研究所,河北石家庄050021 [2]中国科学院遗传与发育生物学研究所农业资源研究中心,河北石家庄050021
出 处:《遥感技术与应用》2008年第2期161-165,I0001,共6页Remote Sensing Technology and Application
基 金:“十五”国家科技攻关项目(2004BA509B14);中国科学院知识创新项目(KZCX2-SW-317)
摘 要:应用冬小麦春季生长期的NOAA/AVHRR资料,反演归一化植被指数(NDVI)、土壤调整植被指数(SAVI)和下垫面温度(Ts),分析了植被指数和下垫面温度空间特征,采用温度植被旱情指数(TVDI),研究了河北省2005年3-5月的冬小麦旱情状况。结果表明:基于SAVI的温度植被旱情指数与土壤表层相对湿度的相关性好于基于NDVI的温度植被旱情指数。通过与气象站土壤水分观测资料进行相关性分析,表明温度植被旱情指数与10cm土壤相对湿度关系最好,20cm次之,50cm较差。因此,基于SAVI的温度植被旱情指数更适于监测冬小麦春季的旱情。Droughts hazard occurs frequently in nature and has a great impact on agriculture. Timely monitoring and assessment of drought conditions is critical to mitigate its effects. Using NOAA/AVHRR satellite data,we derived the normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI),land surface temperature (LST) and analyzed the spatial characteristics of vegetation indices and land surface temperature. The temperature vegetation dryness index (TVDI) was used to monitor the winter wheat drought conditions from March to May of 2005 in the middle-south part of Hebei Province. The results showed that the correlation of soil moisture with TVDI based on SAVI was better than that based on NDVI. The analysis of TVDI and soil moisture data from weather stations' measurement demonstrated that a good correlation existed between TVDI and relative humidity of soil at 10cm and 20cm. Therefore,TVDI is a better indicator for operational drought monitoring.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63