检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王如义[1] 王慈光[1] 郭孜政[1] 唐建桥[1]
机构地区:[1]西南交通大学交通运输学院,四川成都610031
出 处:《西南交通大学学报》2008年第1期96-100,共5页Journal of Southwest Jiaotong University
摘 要:为提高铁路货物周转量预测的准确性,在定性分析的基础上,运用灰色关联度理论选择出反映铁路运输供给能力的7个因素,并用偏最小二乘回归方法处理变量的共线性问题.采用非参数方法表达不能量化的影响因素,建立了半参数回归模型,并与线性回归模型和灰色预测模型进行了比较.研究结果表明,用半参数回归模型预测铁路货物周转量,预测结果的相对误差仅1.7%,比线性回归模型和灰色预测模型的预测精度更高.To raise the forecast precision of railway freight ton-kilometers (RFTK), seven factors reflecting the supply capacity of railway transportation were selected out based on a qualitative analysis and the grey relevancy degree theory, and a semi-parametric regression model was established. The partial least-squares regression method was used to process the multicoUinearity of variables, i.e. , the seven factors, and the non-parameter method was applied to express qualitative factors. The research result shows that with the established seml-parametric regression model, the least relative error of the forecast result for RFTK is only 1.7%, and compared with the linear regression model and the grey forecast model, the semi-parametric regression model has a better effect and higher precision for the forecast of railway freight ton-kilometers.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.157.170