检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江工商大学金融学院,杭州310035 [2]西安交通大学金禾经济研究中心,西安710049
出 处:《系统工程理论与实践》2008年第4期27-34,共8页Systems Engineering-Theory & Practice
基 金:国家自然科学基金(70171005)
摘 要:建立了粗糙集和遗传算法集成的企业贷款违约判别模型.该模型首先利用FUSINTER方法离散化财务数据,并应用遗传算法约简评价指标,进而基于最小约简指标提取违约判别规则,最后对企业短期贷款检验样本进行违约判别.利用贷款企业数据库558家样本企业进行交叉验证技术的实证研究,结果表明,与多元判别分析l、ogistic、BP神经网络等违约判别模型相比,粗糙集和遗传算法集成的违约判别模型是一种更为有效和实用的信用风险评估工具.Integrated model of rough sets and genetic algorithm for short-term loan default prediction is proposed in this paper. Firstly, financial data is discretised by using FUSINTER method and evaluation variables is reduced through genetic algorithm. And then, this reduced information is used to develop default classification rules. Lastly, a set of rules are used to discriminate between healthy and default testing samples. Financial data of 558 loan firms is selected, the effectiveness of integrated model of rough sets and genetic algorithm was verified by cross-validation experiments comparing with multiple discriminant analysis, logistic analysis and BP neural network approach.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229