基于多体系统理论的非球面磨削误差模型与补偿技术  被引量:24

Error Model and Compensation Technology of Aspheric Grinding Based on Multibody System Theory

在线阅读下载全文

作  者:康念辉[1] 李圣怡[1] 郑子文[1] 

机构地区:[1]国防科学技术大学机电工程与自动化学院,长沙410073

出  处:《机械工程学报》2008年第4期143-149,共7页Journal of Mechanical Engineering

基  金:国家自然科学基金(50375155)

摘  要:为提高大中型非球面的磨削精度,从而提高非球面的加工效率,研究轴对称非球面磨削过程的误差模型,并对误差进行补偿。运用多体系统理论,基于一阶线性模型,建立非球面磨削成形的统一误差模型,并且推导各种误差对于最终面形误差的传递函数。基于传递函数特征相似误差集中补偿的方法,将所有趋势项误差转化为砂轮对刀误差以及砂轮形状误差进行补偿,并建立实用补偿模型,从而避免求解、校正各项具体误差。试验结果表明,建立的误差模型和辨识模型正确,可以使面形误差收敛到预期范围,从而解决了轴对称非球面磨削中的精度控制问题。In order to increase the accuracy of grinding large and medium scales aspheric surfaces, and increase the efficiency of fabricating aspheric surfaces, the error model of grinding axisymmetric aspheric surfaces is developed and the errors are compensated. Based on first-order linear model, a unified error model of aspheric grinding is derived by the utilization of the theory of multi -body system, and the transfer function of each error to the shape error is given. Based on centrally compensating the errors whose transfer function characteristics are similar, all trend errors are compensated by transforming them to the setting error and the wheel radius error, and a practical compensation model is presented, thus solving and correcting the specific errors is avoided. The error model and the distinguish model are proved by the results of the experiments, and the shape error will converge to the expected range. Thus the problem of accuracy control in grinding symmetry aspheric surfaces is resolved.

关 键 词:多体系统理论 非球面磨削 面形精度 误差补偿 

分 类 号:TG743[金属学及工艺—刀具与模具]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象