COSET DIAGRAMS FOR A HOMOMORPHIC IMAGE OFΔ(3,3,k)  

COSET DIAGRAMS FOR A HOMOMORPHIC IMAGE OFΔ(3,3,k)

在线阅读下载全文

作  者:M.Ashiq Q.Mushtaq 

机构地区:[1]Department of Basic Sciences and Humanities College of E and ME National University of Sciences and Technology,Rawalpindi,Pakistan [2]Department of Mathematics Quaid-i-Azam University,Islamabad,Pakistan

出  处:《Acta Mathematica Scientia》2008年第2期363-370,共8页数学物理学报(B辑英文版)

摘  要:Let q be a prime power. By PL(Fq) the authors mean a projective line over the finite field Fq with the additional point ∞. In this article, the authors parametrize the conjugacy classes of nondegenerate homomorphisms which represent actions of △(3, 3, k) = (u, v: u^3 = v^3 = (uv)^k = 1〉on PL(Fq), where q ≡ ±1(modk). Also, for various values of k, they find the conditions for the existence of coset diagrams depicting the permutation actions of △(3, 3, k) on PL(Fq). The conditions are polynomials with integer coefficients and the diagrams are such that every vertex in them is fixed by (u^-v^-)^k. In this way, they get △(3, 3, k) as permutation groups on PL(Fq).Let q be a prime power. By PL(Fq) the authors mean a projective line over the finite field Fq with the additional point ∞. In this article, the authors parametrize the conjugacy classes of nondegenerate homomorphisms which represent actions of △(3, 3, k) = (u, v: u^3 = v^3 = (uv)^k = 1〉on PL(Fq), where q ≡ ±1(modk). Also, for various values of k, they find the conditions for the existence of coset diagrams depicting the permutation actions of △(3, 3, k) on PL(Fq). The conditions are polynomials with integer coefficients and the diagrams are such that every vertex in them is fixed by (u^-v^-)^k. In this way, they get △(3, 3, k) as permutation groups on PL(Fq).

关 键 词:Coset diagrams conjugacy classes nondegenerate homomorphism projec tire line and triangle groups 

分 类 号:O152[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象