检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Li ZHAO Wei-qiu CHEN
机构地区:[1]Department of Civil Engineering, Zhejiang University, Hangzhou 310027, China
出 处:《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》2008年第5期583-588,共6页浙江大学学报(英文版)A辑(应用物理与工程)
基 金:the National Natural Science Foundation of China (Nos. 10725210 and 10432030); the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20060335107);the Program for New Century Excellent Talents in University, MOE, China (No. NCET-05-05010)
摘 要:The symplectic approach proposed and developed by Zhong et al. in 1990s for elasticity problems is a rational analytical method, in which ample experience is not needed as in the conventional semi-inverse method. In the symplectic space, elasticity problems can be solved using the method of separation of variables along with the eigenfunction expansion technique, as in traditional Fourier analysis. The eigensolutions include those corresponding to zero and nonzero eigenvalues. The latter group can be further divided into α-and β-sets. This paper reformulates the form of β-set eigensolutions to achieve the stability of numerical calculation, which is very important to obtain accurate results within the symplectic frame. An example is finally given and numerical results are compared and discussed.The symplectic approach proposed and developed by Zhong et al. in 1990s for elasticity problems is a rational analytical method, in which ample experience is not needed as in the conventional semi-inverse method. In the symplectic space, elasticity problems can be solved using the method of separation of variables along with the eigenfunction expansion technique, as in traditional Fourier analysis. The eigensolutions include those corresponding to zero and nonzero eigenvalues, The latter group can be further divided into α- and β-sets. This paper reformulates the form of β-set eigensolutions to achieve the stability of numerical calculation, which is very important to obtain accurate results within the symplectic frame. An example is finally given and numerical results are compared and discussed.
关 键 词:Symplectic approach EIGENFUNCTION Numerical stability Elasticity problems
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173