In situ simultaneous determination of trace elements,U-Pb and Lu-Hf isotopes in zircon and baddeleyite  被引量:102

In situ simultaneous determination of trace elements,U-Pb and Lu-Hf isotopes in zircon and baddeleyite

在线阅读下载全文

作  者:XIE LieWen ZHANG YanBin ZHANG HuiHuang SUN JingFeng WU FuYuan 

机构地区:[1]State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029,China

出  处:《Chinese Science Bulletin》2008年第10期1565-1573,共9页

基  金:the National Natural Science Foundation of China (Grant No. 40325006)

摘  要:This paper describes a combined method of simultaneously measuring U-Pb and Lu-Hf isotopes as well as trace elements in Phalaborwa baddeleyite and 91500, GJ-1, TEMORA-1 and SK10-2 zircons by means of Neptune MC-ICPMS and Agilent Q-ICPMS connected to a 193 nm excimer laser ablation system. Material ablated by laser was carried in different proportions into Q-ICPMS for U-Pb isotopic and trace elemental and MC-ICPMS for Lu-Hf isotopic compositions. Experiments indicate that different proportions of ablated material for the Q-ICPMS and MC-ICPMS (6:4, 5:5 and 4:6 respectively) do not show any bias for the zircon/baddeleyite U-Pb age, Lu-Hf isotope and trace elemental compositions within ana-lytical errors. Using 40―60 μm spot size, the obtained U-Pb ages of Phalaborwa baddeleyite, 91500, GJ-1, TEMORA and SK10-2 zircons are 2065±15 (2σ, n=20), 1063±6 (2σ, n=19), 613±6 (2σ, n=20), 416±5 (2σ, n=20) and 32.6±0.5 (2σ, n=20) Ma, respectively. The 176Hf/177Hf ratios are 0.281231±24 (2SD, n=20), 0.282310±35 (2SD, n=19), 0.282028±34 (2SD, n=20), 0.282687±34 (2SD, n=20) and 0.282752±53 (2SD, n=20), respectively. The obtained trace elemental compositions are identical to the reference values. Therefore, this kind of technique makes it possible to simultaneously obtain the U-Pb age, Lu-Hf iso-topes and trace elemental compositions of zircon and baddeleyite, which could be an important tool in solving problems in earth sciences.This paper describes a combined method of simultaneously measuring U-Pb and Lu-Hf isotopes as well as trace elements in Phalaborwa baddeleyite and 91500, GJ-1, TEMORA-1 and SK10-2 zircons by means of Neptune MC-ICPMS and Agilent Q-ICPMS connected to a 193 nm excimer laser ablation system. Material ablated by laser was carried in different proportions into Q-ICPMS for U-Pb isotopic and trace elemental and MC-ICPMS for Lu-Hf isotopic compositions. Experiments indicate that different proportions of ablated material for the Q-ICPMS and MC-ICPMS (6:4, 5:5 and 4:6 respectively) do not show any bias for the zircon/baddeleyite U-Pb age, Lu-Hf isotope and trace elemental compositions within analytical errors. Using 40-60 μm spot size, the obtained U-Pb ages of Phalaborwa baddeleyite, 91500, GJ-1, TEMORA and SK10-2 zircons are 2065±15 (2σ, n=20), 1063±6 (2σ, n=-19), 613±6 (2σ, n=20), 416±5 (2σ, n=20) and 32.6±0.5 (2σ, n=20) Ma, respectively. The ^176Hf/^177Hf ratios are 0.281231±24 (2SD, n=20), 0.282310±35 (2SD, n=19), 0.282028±34 (2SD, n=20), 0.282687±34 (2SD, n=20) and 0.282752±53 (2SD, n=20), respectively. The obtained trace elemental compositions are identical to the reference values. Therefore, this kind of technique makes it possible to simultaneously obtain the U-Pb age, Lu-Hf isotopes and trace elemental compositions of zircon and baddeleyite, which could be an important tool in solving problems in earth sciences.

关 键 词:镥-铪同位素 锆石 年代测量 地球化学 

分 类 号:Q59[生物学—生物化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象