检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:YU DunXi XU MingHou YAO Hong LIU XiaoWei ZHOU Ke
出 处:《Chinese Science Bulletin》2008年第10期1593-1602,共10页
基 金:the National Natural Science Foundation of China (Grant Nos. 50325621, 50721005 & 50706013)
摘 要:Based on the mass fraction size distribution of aluminum (Al),an improved method for effectively identifying the modes of particulate matter from pulverized coal combustion is proposed in this study. It is found that the particle size distributions of coal-derived particulate matter actually have three modes, rather than just mere two.The ultrafine mode is mainly generated through the vaporization and condensation processes.The coarse mode is primarily formed by the coalescence of molten minerals, while the newly-found central mode is attributed to the heterogeneous condensation or adsorption of vaporized species on fine residual ash particles.The detailed investigation of the mass fraction size distribution of sulfur(S) further demonstrates the rationality and effectiveness of the mass fraction size distribution of the Al in identifying three particle modes.The results show that not only can the number of particle modes be identified in the mass fraction size distributions of the Al but also can their size boundaries be more accurately defined. This method provides new insights in elucidating particle formation mechanisms and their physico-chemical characteristics.Based on the mass fraction size distribution of aluminum (AI), an improved method for effectively identifying the modes of particulate matter from pulverized coal combustion is proposed in this study. It is found that the particle size distributions of coal-derived particulate matter actually have three modes, rather than just mere two. The ultrafine mode is mainly generated through the vaporization and condensation processes. The coarse mode is primarily formed by the coalescence of molten minerals, while the newly-found central mode is attributed to the heterogeneous condensation or adsorption of vaporized species on fine residual ash particles. The detailed investigation of the mass fraction size distribution of sulfur (S) further demonstrates the rationality and effectiveness of the mass fraction size distribution of the AI in identifying three particle modes. The results show that not only can the number of particle modes be identified in the mass fraction size distributions of the AI but also can their size boundaries be more accurately defined. This method provides new insights in elucidating particle formation mechanisms and their physico-chemical characteristics.
分 类 号:TQ53[化学工程—煤化学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222