Global Well-posedness for gKdV-3 in Sobolev Spaces of Negative Index  

Global Well-posedness for gKdV-3 in Sobolev Spaces of Negative Index

在线阅读下载全文

作  者:Zhi Fei ZHANG 

机构地区:[1]School of Mathematical Science, Peking University, Beijing 100871, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2008年第5期857-866,共10页数学学报(英文版)

基  金:NSFC 10601002

摘  要:The initial value problem for the generalized Korteweg-deVries equation of order three on the line is shown to be globally well posed for rough data. Our proof is based on the multilinear estimate and the I-method introduced by Colliander, Keel, Staffilani, Takaoka, and Tao.The initial value problem for the generalized Korteweg-deVries equation of order three on the line is shown to be globally well posed for rough data. Our proof is based on the multilinear estimate and the I-method introduced by Colliander, Keel, Staffilani, Takaoka, and Tao.

关 键 词:KdV equation Global well posedness I-METHOD Multilinear estimate 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象