检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郝正航[1] 李少波[2] 周杰娜[1] 文方[1]
机构地区:[1]贵州大学电气工程学院,贵州贵阳550003 [2]贵州大学CAD技术中心,贵州贵阳550003
出 处:《控制理论与应用》2008年第2期199-204,共6页Control Theory & Applications
基 金:国家自然科学基金资助项目(50575047);贵州省科学技术基金资助项目(黔科合J字[2006]2114号)
摘 要:机械回路谐振引起了励磁系统频率特性曲线出现"波峰"和"波谷",造成现有方法不易准确测量或计算励磁系统相位滞后角.为此,本文提出一种新的多机系统PSS参数优化方法.首先,重新定义基于多机模型的励磁系统相位滞后角,并推导出相应的计算公式,基于新定义的计算方法不再受机械回路谐振的影响,可以得出更合理的计算结果.然后,在PSS增益整定时,将问题描述转化为多机系统部分输出量反馈的优化模型,通过求解Levine-Athans方程组得到最佳PSS增益.最后将所提方法应用于一个8机电力系统,与传统方法比较后,表明电力系统阻尼特性得到进一步改善.Frequency characteristic curves of excitation systems always arise or sink sharply at the frequency of mechanical loop-resonance. This is the reason why phase-lagging angles of excitation systems are difficult to be measured or calculated accurately. In this paper, a novel method of power system stabilizer(PSS) optimization for multi-machine system is presented. Firstly, based on the multi-machine power system model, a new definition of phase-lagging angles for excitation systems is built, and the corresponding algorithm is derived simultaneously. The proposed definition and its algorithm produce more reasonable calculation results, which are not influenced by the resonance of mechanical loops. Secondly, The mathematical model used for setting PSS gain can be described by another control problem, which optimizes partial feedback variables in a multi-machine power system. So, the best gain of PSS is obtained by solving Levine-Athans equations. Finally, using an eight-machine test system, the proposed approach and traditional method are compared. Simulation result shows that the new method mentioned in this paper is helpful to damping performance.
关 键 词:电力工程 电力系统稳定器 参数优化 动态稳定 励磁控制 频率特性 低频振荡
分 类 号:TM76[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28