检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]桂林电子科技大学信息与通信学院,桂林541004
出 处:《电子与信息学报》2008年第5期1118-1121,共4页Journal of Electronics & Information Technology
基 金:国家自然科学基金(60172011)资助课题
摘 要:与SOFM,最大熵聚类,K均值聚类相比,"Neural-Gas"网络算法具有收敛速度快、代价误差小等优点。但"Neural-Gas"网络用于非均匀分布的线性或非线性数据集进行降维或可视化时,输出空间上固定有序的神经元表现出极不理想的距离信息。为此,该文根据归一化概率自组织特征映射的基本思想,提出混合"Neural-Gas"网络和Sammon映射的新方法来解决此问题,通过"Neural-Gas"网络算法进行特征聚类以降低计算复杂度,通过Sammon映射保持输入空间和输出空间上神经元间的距离相似性。仿真结果表明,该混合算法对合成数据集或现实数据集的可视化能够取得较理想的效果,从而验证了该混合算法的可行性和有效性。Compared with Self-Organizing Feature Map(SOFM), maximum-entropy clustering and K-means clustering, the Neural-Gas network algorithm has advantages of faster convergence, smaller cost distortion errors, etc. However, the fixed and regular neurons on the output space represent worse distance information when the neural gas network algorithm is used for dimension reduction and visualization of linear or nonlinear data sets with nonuniform distribution. Therefore, according to the basic idea of the probabilistic regularized SOFM, a new visualization method for hybridizing neural gas network and Sammon's mapping is proposed to overcome this problem, and it reduces the computational complexity with using neural gas network algorithm for feature clustering and preserves the interneuronal distances resemblance from input space into output space by using Sammon's mapping. Simulation results show that the proposed hybridizing algorithm can obtain the better visualization effect on the synthetic and real data sets, thus demonstrating the feasibility and effectiveness of the hybridizing algorithm.
关 键 词:Neural-Gas网络 Sammon映射 混合算法 距离相似性
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33