检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ping ZHANG
机构地区:[1]Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China
出 处:《Chinese Annals of Mathematics,Series B》2008年第3期265-272,共8页数学年刊(B辑英文版)
基 金:the National Natural Science Foundation of China(Nos.10525101,10421101);the 973 Project of the Ministry of Science and Technology of China and the innovation grant from Chinese Academy of Sciences.
摘 要:Motivated by the results of J. Y. Chemin in "J. Anal. Math., 77, 1999, 27- 50" and G. Furioli et al in "Revista Mat. Iberoamer., 16, 2002, 605-667", the author considers further regularities of the mild solutions to Navier-Stokes equation with initial data uo ∈ L^d(R^d). In particular, it is proved that if u C ∈([0, T^*); L^d(R^d)) is a mild solution of (NSv), then u(t,x)- e^vt△uo ∈ L^∞((0, T);B2/4^1,∞)~∩L^1 ((0, T); B2/4^3 ,∞) for any T 〈 T^*.
关 键 词:Navier-Stokes equations Kato's solutions Para-differential decomposition
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38