Remark on the Regularities of Kato's Solutions to Navier-Stokes Equations with Initial Data in L^d(R^d)  被引量:3

Remark on the Regularities of Kato's Solutions to Navier-Stokes Equations with Initial Data in L^d(R^d)

在线阅读下载全文

作  者:Ping ZHANG 

机构地区:[1]Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China

出  处:《Chinese Annals of Mathematics,Series B》2008年第3期265-272,共8页数学年刊(B辑英文版)

基  金:the National Natural Science Foundation of China(Nos.10525101,10421101);the 973 Project of the Ministry of Science and Technology of China and the innovation grant from Chinese Academy of Sciences.

摘  要:Motivated by the results of J. Y. Chemin in "J. Anal. Math., 77, 1999, 27- 50" and G. Furioli et al in "Revista Mat. Iberoamer., 16, 2002, 605-667", the author considers further regularities of the mild solutions to Navier-Stokes equation with initial data uo ∈ L^d(R^d). In particular, it is proved that if u C ∈([0, T^*); L^d(R^d)) is a mild solution of (NSv), then u(t,x)- e^vt△uo ∈ L^∞((0, T);B2/4^1,∞)~∩L^1 ((0, T); B2/4^3 ,∞) for any T 〈 T^*.

关 键 词:Navier-Stokes equations Kato's solutions Para-differential decomposition 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象