检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卓莉[1] 郑璟[2] 王芳[1] 黎夏[1] 艾彬[1] 钱峻屏[1]
机构地区:[1]中山大学地理科学与规划学院,广州510275 [2]广东省气候中心,广州510080
出 处:《地理研究》2008年第3期493-501,726,共10页Geographical Research
基 金:国家自然科学基金(40601010);中国博士后基金(20060390208);“985工程”GIS与遥感的地学应用科技创新平台资助(105203200400006);国家杰出青年科学基金资助项目(40525002)
摘 要:封装型的特征选择算法相对于过滤算法而言更有助于提高分类精度,因此在当前计算技术及效率快速发展的背景下必将成为未来之趋势。本文以支持向量机(SVM)为分类器,遗传算法(GA)为特征子集的搜索算法,构建了封装型的特征选择算法GA-SVM,并用EN-VI/IDL语言编程实现,最后以HYPERION高光谱数据为例对算法予以应用。结果表明,GA-SVM算法可从196个波段中选择出13个波段,同时分类精度较不做特征选择时提高了约4%。由此可见,GA-SVM封装型特征选择算法具有较好的同时优化特征子集和SVM核函数的性能,可为当前高光谱数据的特征选择提供一个较好的算法。The high-dimensional feature vectors of hyper spectral data often impose a high computational cost as well as the risk of "over fitting" when classification is performed. Therefore it is necessary to reduce the dimensionality through ways like feature selection. Currently, there are two kinds of feature selection methods: filter methods and wrapper methods. The former kind requires no feedback from classifiers and estimates the classification performance indirectly. The latter kind evaluates the "goodness" of selected feature subset directly based on the classification accuracy. Many experimental results have proved that the wrapper methods can yield better performance, although they have the dis advantage of high computational cost. In this paper, we present a Genetic Algorithm (GA) based wrapper method for classification of hyper spectral data using Support Vector Machine (SVM), a state-of-art classifier that has found to be success in a variety of areas. The genetic algorithm (GA), which seeks to solve optimization problems using the methods of evolution, specifically survival of the fittest, was used to optimize both the feature subset, i.e. band subset, of hyper spectral data and SVM kernel parameters simultaneously. A special strategy was adopted to reduce computation cost caused by the high-dimensional feature vectors of hyper spectral data when the feature subset part of chromo- some was designed. The GA-SVM method was realized using the ENVI/IDL language, and was then tested by applying a HYPERION hyper spectral image. Comparison of the optimized results and the un-optimized results showed that the GA-SVM method could significantly reduce the computation cost while improving the classification accuracy. The number of bands used for classification was reduced from 198 to 13, while the classification accuracy increased from 88.81% to 92.51%. The optimized values of the two SVM kernel parameters were 95. 0297 and 0. 2021, respectively, which were different from the default va
关 键 词:特征选择 高光谱 遗传算法(GA) 支持向量机(SVM)
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117