检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京理工大学计算机科学技术学院
出 处:《计算机工程》2008年第10期70-72,共3页Computer Engineering
基 金:北京理工大学基础研究基金资助项目(0301F18)
摘 要:PPM模型适合预测用户的下一个请求,但已有的PPM模型不具备在线性,更新通过重构来实现,不能满足实时更新的要求。该文提出基于非压缩后缀树的在线PPM预测模型,采用非压缩后缀树实现增量式在线更新,提高了模型的更新速度。该模型的优点是具备在线性。Prediction by Partial Matching(PPM) models are appropriate for predicting the user's next request, but these models are not on-line and their updates are implemented by rebuilding models which can not meet the real-time update. This paper presents an on-line PPM prediction model based on non-compact suffix tree. The model makes use of non-compact suffix tree to implement the incremental on-line update, and its update speed is improved. This model has the important property of being on-line.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.84.11