Numerical calculation of magnetization behavior for Co nanowire array  

Numerical calculation of magnetization behavior for Co nanowire array

在线阅读下载全文

作  者:钟克华 黄志高 陈志高 冯倩 杨艳敏 

机构地区:[1]Department of Physics,Fujian Normal University

出  处:《中国有色金属学会会刊:英文版》2008年第3期700-706,共7页Transactions of Nonferrous Metals Society of China

基  金:Project(6067655) supported by the National Natural Science Foundation of China;Project(2005CB623605) supported by the National Basic Research Program of China;Project(E0320002) supported by the Natural Science Foundation of Fujian Province, China;Project(JB07045) supported by the Educational Department of Fujian Province, China

摘  要:Based on Monte Carlo method, the hysteresis loops for both individual Co nanowires and their array were simulated, and the influence of the strength of the dipolar interaction on the macroscopical magnetic properties of Co nanowire array was investigated. The simulated results indicate that the coercivity approximately increases linearly with the increase of the strength coefficient of the dipolar interaction. The interwire dipole interaction between wires tends to develop a magnetic easy axis perpendicular to the wire axis. In the magnetic reversal process, competition between the interwire dipolar interaction and the shape anisotropy of individual wires which forces the moments to orient along the axis makes the magnetic reversal of the array different from that of individual wire. For applied field parallel to wire axis, the coercivity of nanowire array increases rapidly with the increase of the nearest-neighbor interwire distance, and approximately increases linearly with the increase of the strength coefficient of the dipolar interaction for the fixed diameter and the nearest-neighbor interwire distance. While for applied field perpendicular to wire axis, in contrast, the coercivity decreases with increasing the nearest-neighbor interwire distance, and nearly remains a constant with the increase of the strength coefficient of the dipolar interaction.Based on Monte Carlo method, the hysteresis loops for both individual Co nanowires and their array were simulated, and the influence of the strength of the dipolar interaction on the macroscopical magnetic properties of Co nanowire array was investigated. The simulated results indicate that the coercivity approximately increases linearly with the increase of the strength coefficient of the dipolar interaction. The interwire dipole interaction between wires tends to develop a magnetic easy axis perpendicular to the wire axis. In the magnetic reversal process, competition between the interwire dipolar interaction and the shape anisotropy of individual wires which forces the moments to orient along the axis makes the magnetic reversal of the array different from that of individual wire. For applied field parallel to wire axis, the coercivity of nanowire array increases rapidly with the increase of the nearest-neighbor interwire distance, and approximately increases linearly with the increase of the strength coefficient of the dipolar interaction for the fixed diameter and the nearest-neighbor interwire distance. While for applied field perpendicular to wire axis, in contrast, the coercivity decreases with increasing the nearest-neighbor interwire distance, and nearly remains a constant with the increase of the strength coefficient of the dipolar interaction.

关 键 词:钴纳米导线 偶极子 相互作用 磁化强度 

分 类 号:TB383.1[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象