Soliton, Positon and Negaton Solutions of Extended KdV Equation  

Soliton, Positon and Negaton Solutions of Extended KdV Equation

在线阅读下载全文

作  者:WU Hong-Xia ZENG Yun-Bo FAN Tian-You 

机构地区:[1]Department of Mathematics, Jimei University, Xiamen 361021, China [2]Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China [3]Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

出  处:《Communications in Theoretical Physics》2008年第3期529-534,共6页理论物理通讯(英文版)

基  金:supported by National Natural Science Foundation of China under Grant No.10601028

摘  要:Darboux transformation (DT) provides us with a comprehensive approach to construct the exact and explicit solutions to the negative extended KdV (eKdV) equation, by which some new solutions such as singular soliton, negaton, and positon solutions are computed for the eKdV equation. We rediscover the soliton solution with finiteamplitude in [A.V. Slyunyaev and E.N. Pelinovskii, J. Exp. Theor. Phys. 89 (1999) 173] and discuss the difference between this soliton and the singular soliton. We clarify the relationship between the exact solutions of the eKdV equation and the spectral parameter. Moreover, the interactions of singular two solitons, positon and negaton, positon and soliton, and two positons are studied in detail.

关 键 词:the extended KdV equation singular soliton POSITON NEGATON Darboux transformation 

分 类 号:O413[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象