检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]第二炮兵工程学院
出 处:《传感器与微系统》2008年第5期37-39,42,共4页Transducer and Microsystem Technologies
摘 要:传感器状态的好坏很大程度上影响暖通空调(HVAC)系统的运行,对其展开故障诊断十分必要。核主成分分析(KPCA)方法通过集成算子与非线性核函数计算高维特性空间的主元成分,有效捕捉过程变量中的非线性关系,将其用于传感器常见4种故障的诊断,先用Q统计量进行故障监测,再用T2贡献量百分比变化来识别故障。实验结果表明:KPCA方法具有很好的故障监测与诊断能力。Fault detection and diagnosis for sensor is necessary, which affects the performance of the HVAC system seriously. The kernel principal component analysis (KPCA) effectively captures the nonlinear relationship of the process variables, which computes principal-component in high-dimensional feature space by means of integral operators and nonlinear kernel functions. The KPCA method is used in diagnosing for four familiar sensor faults. At first its fault is detected by Q statistic, at second its fault is identified by T^2 contribution percent change. The experiment result shows the KPCA method has good performance in fault detection and diagnosis.
分 类 号:TP206[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222