一种非随机生成聚合组播路由转发表的算法  被引量:1

A Non-random Generating Algorithm for Aggregation Multicast Routing Forward Tables

在线阅读下载全文

作  者:刘晓峰[1] 华蓓[1] 方琳瑜[2] 完振升[1] 

机构地区:[1]中国科学技术大学计算机科学与技术系,安徽合肥230027 [2]中国科学技术大学管理学院,安徽合肥230027

出  处:《计算机仿真》2008年第5期109-112,194,共5页Computer Simulation

摘  要:随着组播技术的应用,基于组播源地址和组播组地址进行二元组表项存储的组播路由转发表将呈爆炸式膨胀,内存消耗随之急剧增加,最终将成为组播路由转发的瓶颈之一。将组播路由转发表进行无类域间路由聚合成为一种有效的解决组播路由转发表爆炸式膨胀的一种方式。如何获取数据集是聚合组播路由表研究课题中,必然要解决的问题。由于组播路由转发表的聚合目前尚处在研究中,很难在网络上获取具有一定代表性的聚合组播路由转发表,而高性能路由算法的设计和实现与实际路由表的结构有很大关系。根据组播主干网组播IP地址分布的特性和规律,采取赌轮选择算法,非随机生成聚合组播路由转发表的方法,为仿真组播路由转发表和研究组播路由提供了依据。目前,应用聚合组播路由表算法的研究已取得了理想效果。The wide application of muhicast has led to the unprecedented expansion of the muhicast routing for-ward table and the sharp increasing memory consumption, which will finally become the bottleneck of multicast for-warding. The muhicast routing forward table is based on binary tuples comprised of the muhicast source address and the destination group address. To solve the above problem, the classless inter-domain routing aggregation should be carried out. The acquisition of data set is a pre-requisite for this kind of research. Currently, there is no accessible muhicast routing forward table, which is representative and of satisfactory size, since muhicast is still a fledging industry. However, the design and implementation of high performance routing algorithm are highly correlated with the realistic routing table. This paper proposes a method to tackle this problem, by firstly summarizing the characteristics of muhicast routing forward tables through persistent analysis, and then generating an aggregation forward table with roulette wheel selection. Therefore, a preferable approach for forward table simulation and muhicast research can be provided. Now, this method has been perfectly used in the arithmetic of aggregation forward table research by the author.

关 键 词:组播 路由转发 聚合 赌轮选择算法 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象