检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江工业大学市政工程系,杭州310014 [2]浙江大学市政工程研究所,杭州310027
出 处:《哈尔滨工业大学学报》2008年第4期644-649,共6页Journal of Harbin Institute of Technology
基 金:国家自然科学资金资助项目(50078048);浙江省教育厅科研项目(20070194);浙江环境工程重中之重开放基金资助项目
摘 要:针对传统遗传算法存在高维空间寻优能力较差的问题,提出采用正交多智能体算法求解管网直接优化调度模型.对智能体的随机初始种群进行正交操作,得到较优初始种群,通过智能体的竞争和自学习,找到较优解.结果表明:与正交自适应遗传算法相比,正交多智能体算法具有更强全局搜索能力和更快寻优速度,并且正交多智能体算法优化方案较大提高了水泵运行效率,可节电2.96%.As traditional genetic algorithm (GA) can' t find optimal solution in a high dimension space, an orthogonal multi-agent algorithm was proposed to solve the direct optimal operation model of water distribution network. Orthogonal operation was applied to the random initial population of agents to achieve the optimal initial population, then the operations of competition and self-learning were performed among the agents to find the optimal solution. Case study shows that the orthogonal multi-agent algorithm has better global search performance and higher convergence speed than the orthogonal self-adaptive GA, and that the pump schedule policy determined by orthogonal multi -agent algorithm is more efficient and the electricity expanse is reduced by 2. 96%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.68.172