检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾鸣[1] 冯义[1] 刘达[1] 李洪东[2] 刘玮[1]
机构地区:[1]华北电力大学工商管理学院,北京市昌平区102206 [2]国家电网公司英大证券有限公司,广东省深圳市518033
出 处:《中国电机工程学报》2008年第16期84-89,共6页Proceedings of the CSEE
摘 要:传统的组合预测方法主要依靠历史预测误差确定组合权值,预测结果受历史预测误差影响较大,没有考虑预测时点的外界影响因素。利用支持向量机,神经网络和时间序列等多种不同的预测方法,从不同侧面对电价进行预测。利用神经网络等模型对预测的历史误差和预测时点的外界影响因素进行分析建模,建立每个模型的可信度评价模型。采用DS(Dempster-Shafe)证据理论对每个模型的可信度进行分析评价和合成,确立最终的模型组合预测权值。通过该权值对相应的预测结果进行加权求和得到最终的预测结果。以加州电力市场为例,证明了该方法的有效性。The combined weights in traditional combined method for electricity forecasting are obtained with calculating the historical forecasting errors, with no considering of the environmental factors. Five models from support vector machine (SVM), artificial neural networks (ANN), and time series forecasting techniques were selected to forecast the electricity price from different views. Four models from ANN and SVM were selected as experts to evaluate the credit of forecasting results of the five above models, with historical forecasting errors and environmental influence. The credit were combined to calculate the weights with Dempster-Shafer (DS) evidential theory. The final forecasting was obtained by the weighted forecasting. The experiment of California power utilities validates the proposed method.
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30