The Pressure in Operator Algebras  

The Pressure in Operator Algebras

在线阅读下载全文

作  者:Cheng Jun HOU 

机构地区:[1]Department of Mathematics, Qufu Normal University, Qufu 273165, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2008年第6期983-996,共14页数学学报(英文版)

基  金:the NNSF of China (Grant No.A0324614);NSF of Shandong (Grant No.Y2006A03);NSF of QFNU (Grant No.xj0502)

摘  要:We introduce two notions of the pressure in operator algebras, one is the pressure Pα(π, T) for an automorphism α of a unital exact C^*-algebra A at a self-adjoint element T in A with respect to a faithful unital *-representation π the other is the pressure Pτ,α(T) for an automorphism α of a hyperfinite von Neumann algebra M at a self-adjoint element T in M with respect to a faithful normal α-invariant state τ. We give some properties of the pressure, show that it is a conjugate invaxiant, and also prove that the pressure of the implementing inner automorphism of a crossed product A×α Z at a self-adjoint operator T in A equals that of α at T.We introduce two notions of the pressure in operator algebras, one is the pressure Pα(π, T) for an automorphism α of a unital exact C^*-algebra A at a self-adjoint element T in A with respect to a faithful unital *-representation π the other is the pressure Pτ,α(T) for an automorphism α of a hyperfinite von Neumann algebra M at a self-adjoint element T in M with respect to a faithful normal α-invariant state τ. We give some properties of the pressure, show that it is a conjugate invaxiant, and also prove that the pressure of the implementing inner automorphism of a crossed product A×α Z at a self-adjoint operator T in A equals that of α at T.

关 键 词:exact C^*-algebra hyperfinite von Neumann algebra ENTROPY PRESSURE crossed product 

分 类 号:O177.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象