检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Cheng Jun HOU
机构地区:[1]Department of Mathematics, Qufu Normal University, Qufu 273165, P. R. China
出 处:《Acta Mathematica Sinica,English Series》2008年第6期983-996,共14页数学学报(英文版)
基 金:the NNSF of China (Grant No.A0324614);NSF of Shandong (Grant No.Y2006A03);NSF of QFNU (Grant No.xj0502)
摘 要:We introduce two notions of the pressure in operator algebras, one is the pressure Pα(π, T) for an automorphism α of a unital exact C^*-algebra A at a self-adjoint element T in A with respect to a faithful unital *-representation π the other is the pressure Pτ,α(T) for an automorphism α of a hyperfinite von Neumann algebra M at a self-adjoint element T in M with respect to a faithful normal α-invariant state τ. We give some properties of the pressure, show that it is a conjugate invaxiant, and also prove that the pressure of the implementing inner automorphism of a crossed product A×α Z at a self-adjoint operator T in A equals that of α at T.We introduce two notions of the pressure in operator algebras, one is the pressure Pα(π, T) for an automorphism α of a unital exact C^*-algebra A at a self-adjoint element T in A with respect to a faithful unital *-representation π the other is the pressure Pτ,α(T) for an automorphism α of a hyperfinite von Neumann algebra M at a self-adjoint element T in M with respect to a faithful normal α-invariant state τ. We give some properties of the pressure, show that it is a conjugate invaxiant, and also prove that the pressure of the implementing inner automorphism of a crossed product A×α Z at a self-adjoint operator T in A equals that of α at T.
关 键 词:exact C^*-algebra hyperfinite von Neumann algebra ENTROPY PRESSURE crossed product
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44