Engineering Deinococcus radiodurans into biosensor to monitor radioactivity and genotoxicity in environment  被引量:2

Engineering Deinococcus radiodurans into biosensor to monitor radioactivity and genotoxicity in environment

在线阅读下载全文

作  者:GAO GuanJun FAN Lu LU HuiMing HUA YueJin 

机构地区:[1]Institute of Nuclear-Agricultural Sciences, Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China

出  处:《Chinese Science Bulletin》2008年第11期1675-1681,共7页

基  金:the National Basic Research Program (Grant No. 2004CB19604);National Hi-Tech Development Program (Grant No. 2007AA021305);Distinguished Young Scientist (Grant No. 30425038);key project from the National Natural Science Foundation of China (Grant No. 30330020)

摘  要:Based on a genetically modified radioresistant bacteria Deinococcus radiodurans, we constructed a real time whole cell biosensor to monitor radioactivity and genotoxicity in highly radioactive environ-ment. The enhanced green fluorescence protein (eGFP) was fused to the promoter of the crucial DNA damage-inducible recA gene from D. radiodurans, and the consequent DNA fragment (PrecA-egfp) car-ried by plasmid was introduced into D. radiodurans R1 strain to obtain the biosensor strain DRG300. This engineered strain can express eGFP protein and generate fluorescence in induction of the recA gene promoter. Based on the correlation between fluorescence intensity and protein expression level in live D. radiodurans cells, we discovered that the fluorescence induction of strain DRG300 responds in a remarkable dose-dependent manner when treated with DNA damage sources such as gamma radiation and mitomycin C. It is encouraging to find the widely detective range and high sensitivity of this re-constructed strain comparing with other whole cell biosensors in former reports. These results suggest that the strain DRG300 is a potential whole cell biosensor to construct a detective system to monitor the biological hazards of radioactive and toxic pollutants in environment in real time.Based on a genetically modified radioresistant bacteria Deinococcus radiodurans, we constructed a real time whole cell biosensor to monitor radioactivity and genotoxicity in highly radioactive environment. The enhanced green fluorescence protein (eGFP) was fused to the promoter of the crucial DNA damage-inducible recA gene from D. radiodurans, and the consequent DNA fragment (PrecA-egfp) carried by plasmid was introduced into D. radiodurans R1 strain to obtain the biosensor strain DRG300. This engineered strain can express eGFP protein and generate fluorescence in induction of the recA gene promoter. Based on the correlation between fluorescence intensity and protein expression level in live D. radiodurans cells, we discovered that the fluorescence induction of strain DRG300 responds in a remarkable dose-dependent manner when treated with DNA damage sources such as gamma radiation and mitomycin C. It is encouraging to find the widely detective range and high sensitivity of this reconstructed strain comparing with other whole cell biosensors in former reports. These results suggest that the strain DRG300 is a potential whole cell biosensor to construct a detective system to monitor the biological hazards of radioactive and toxic pollutants in environment in real time.

关 键 词:生物传感器 环境监测 放射能 环境污染 

分 类 号:X837[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象