检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用》2008年第6期1411-1413,1416,共4页journal of Computer Applications
基 金:国家自然科学基金资助项目(60275020);上海市教委科研项目(06FZ007);上海海事大学重点学科建设项目(XL0101)
摘 要:利用遗传算法优化投影方向,投影寻踪模型将高维的文本特征数据投影到2~3维的低维可视化空间上,并根据高维数据在这个低维空间当中的投影特征值来反映其线性和非线性结构或特征,达到数据降维目的并实现文本数据特征可视化。不仅大大约简了文本挖掘过程的计算复杂性,还有助于在K-means聚类算法中确定初始中心点数目,提高算法精度。实验验证了这种方法应用于文本特征降维的有效性。Using genetic algorithm to search for the optimal projecting direction, projection pursuit model was used to project text feature data from high-dimensional space into low-dimensional space (2 or 3 dimensions ), and the linear and nonlinear structures and features of the high-dimensional data were shown by its projecting feature value in the low dimensional space, therefore dimensionality was reduced and visualization for high-dimensional text feature data was realized. This method is not only cutting down the computing complexity in the process of text mining, but also helping to determine the number of initial center point for K-means algorithm, and improving the accuracy of the algorithm. Experiments demonstrate the efficiency of this method for text feature dimension reduction.
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222