检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨继君[1] 许维胜[2] 黄武军[1] 吴启迪[2]
机构地区:[1]同济大学经济与管理学院,上海201804 [2]同济大学电子与信息工程学院,上海201804
出 处:《计算机应用》2008年第6期1620-1623,共4页journal of Computer Applications
摘 要:当突发事件发生后,在应急资源有限的情况下,对多个灾点进行合理的资源调度是一个非常现实而复杂的问题。从多灾点所需应急资源的角度出发,提出了基于非合作博弈的应急资源调度模型和算法。在该调度模型中,各个灾点被映射为博弈模型的局中人,可能的资源调度方案映射为策略集,资源调度成本的倒数映射为效用函数,将应急资源的调度问题转化为对非合作博弈调度模型的Nash均衡点求解问题,接着介绍了一种求解Nash均衡点的迭代算法。最后对模型的仿真测试验证了该模型的有效性和可行性。As emergency happens, the scheduling of rescue resources to multiple emergency locations is a realistic and intricate problem, especially when the available resources are limited. After analyzing the competition requirements of multiple emergency locations, a non-cooperative games model and algorithm for scheduling of rescue resources was presented. In the model, the players corresponded to various emergency locations, strategies to all resources scheduling and the payoff of each emergency location to the reciprocal of its scheduling cost. Thus, the optimal scheduling results were determined by the Nash equilibrium point of this game. Then the iterative algorithm was introduced to seek out the Nash equilibrium point. A numerical case test was given to demonstrate the feasibility and availability of the model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.47