检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学雷达信号处理国家重点实验室,西安710071
出 处:《西安交通大学学报》2008年第6期747-750,共4页Journal of Xi'an Jiaotong University
基 金:国家自然科学基金资助项目(60672128)
摘 要:针对高斯白噪声中的二维角度估计问题,提出一种非酉联合对角化方法.该方法利用平移不变结构阵列信号子空间的旋转不变性,构造一组具有对角结构的空时相关矩阵,通过降维相关矩阵组的联合对角化,估计出阵列导向矢量矩阵,实现二维波达方向估计,所得二维角度能自动配对.该方法的计算量小于交替列对角化中心(ACDC)算法,且由于每步迭代具有精确的最小二乘闭式解,消除了ACDC算法的误差积累问题,其估计精度比二维旋转不变子空间方法和ACDC算法至少高5 dB和2 dB.A non-unitary joint diagonalization method was proposed to estimate the two-dimension (2D) direction of arrival (DOA) embedded in additive Gaussian noise. Using the rotational invarlance property among signal subspace induced by an array of sensors with a displacement invariance structure, a set of spatio-temporal correlation matrices which possess diagonal structure were introduced. By implementing the joint-diagonalization of dimension-reduction correlation matrices, the array response matrix was obtained and the 2D DOA can be achieved. The computational complexity of the proposed iterative algorithm is lower than the alternating columns diagonal centers (ACDC) algorithm and the 2D DOA can be paired automatically. Since each iteration step of the proposed algorithm poses a typical least square problem having a unique closed solution, there is no error accumulation as the ACDC algorithm. Simulations show that the estimation performance of the proposed algorithm is at least higher than the 2D estimation of signal parameters via rotational invariance techniques and ACDC algorithm with 5 dB and 2 dB, respectively.
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13