检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学计算机系,北京100084 [2]西北工业大学计算机学院,西安710072 [3]海军装备研究院,北京100073
出 处:《海军航空工程学院学报》2008年第3期252-256,共5页Journal of Naval Aeronautical and Astronautical University
基 金:西北工业大学本科毕业设计重点扶持项目(2007)
摘 要:针对目标识别中常用BP—DS信息融合方法识别率低,运行速度慢,抗噪性差等问题,提出一种基于PNN网络和DS证据的信息融合方法。该方法不仅综合了证据理论在处理不确定信息方面的优点和神经网络在数值逼近上的长处,利用神经网络和证据推理算法获取了基本概率赋值,同时突出了PNN网络在处理多传感器信息的准确性和运算速度上都要优越于BP网络的特点。To solve those problems of the low recognition rate, the slow running speed and the noise immunity of the object identification method based on BP-DS model, an information fusion method based on PNN (Probabilistic Neural Network) and DS evidence theory was proposed. The method synthesized the merit of evidence theory in dealing with uncertain information and the virtue of neural network in numerical approximation, obtained the basic probability assignment function based on neural network and evidence theory, and stood out the characteristics of PNN, such as accuracy and running speed, in dealing with the information from multisensor, which were better than those of BP neural network.
分 类 号:TN957.51[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145