基于Catmull-Clark细分的新细分算法的研究  

Research on New Subdivision Scheme Method for Catmull-Clark Subdivision

在线阅读下载全文

作  者:王其华[1] 孙立镌[1] 

机构地区:[1]哈尔滨理工大学计算机科学与技术学院,黑龙江哈尔滨150080

出  处:《计算机技术与发展》2008年第3期40-42,共3页Computer Technology and Development

基  金:国家自然科学基金资助项目(60173055)

摘  要:提出一种四边形网格细分算法:每细分一次四边形网格,其数目增加为原来的两倍,细分二次结果相当于一次二分细分,采用边数缓慢增长的策略,使生成的曲面光滑连续。该算法生成曲面在规则点具有C2连续性,在非规则点具有C1连续性。该算法对网格几何操作简单,所得网格数据量增长相对缓慢,适合3D图像重构及网络传输等应用领域。由于文中细分算法对初始网格的拓扑变更,因此第一次细分会产生扭曲现象,但后面的细分会逐步光滑。A new stationary subdivision scheme is presnted for quadrilateral meshes, In contrast to the usual dyadic splitting operation, the number of quadrilaterals increases in every step by a factor of 2, By using the numher slow growth strategy,it causes the production the curved surface to be smooth continuously. Applying the subdivision twice is equivalent to a dyadic subdivision, The resulting surfaee is C2 continuous for regular vertiem and CI continuous for extraordinary vertices, The simplicity in geometric operation and the slow topological refinement make the subdivision scheme more suitable for many applications, such as 3D image reconstruction and network tranwnission. Because this article subdivides the algorithm to the initial gridanalysis situs change, therefore the first thin branch has the distortion phenomenon, but the behind thin branch is gradually smooth.

关 键 词:细分算法 四边形网格 非规则点 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象